Impact of Antigen Density on the Binding Mechanism of IgG Antibodies - EPHE - École pratique des hautes études
Article Dans Une Revue Scientific Reports Année : 2017

Impact of Antigen Density on the Binding Mechanism of IgG Antibodies

Résumé

The density and distribution pattern of epitopes at the surface of pathogens have a profound impact on immune responses. Although multiple lines of evidence highlight the significance of antigen surface density for antibody binding, a quantitative description of its effect on recognition mechanisms is missing. Here, we analyzed binding kinetics and thermodynamics of six HIV-1 neutralizing antibodies as a function of the surface density of envelope glycoprotein gp120. Antibodies that recognize gp120 with low to moderate binding affinity displayed the most pronounced sensitivity to variation in antigen density, with qualitative and substantial quantitative changes in the energetics of the binding process as revealed by non-equilibrium and equilibrium thermodynamic analyses. In contrast, the recognition of gp120 by the antibodies with the highest affinity was considerably less influenced by variations in antigen density. These data suggest that a lower affinity of antibodies permits higher dynamics during the antigen recognition process, which may have considerable functional repercussions. These findings contribute to a better understanding of the mechanisms of antigen recognition by antibodies. They are also of importance for apprehending the impact of antigen topology on immune-defense functions of antibodies.

Mots clés

Fichier principal
Vignette du fichier
s41598-017-03942-z.pdf (3.26 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

pasteur-01570226 , version 1 (28-07-2017)

Licence

Identifiants

Citer

Maya Hadzhieva, Anastas D. Pashov, Srinivas Kaveri, Sébastien Lacroix-Desmazes, Hugo Mouquet, et al.. Impact of Antigen Density on the Binding Mechanism of IgG Antibodies. Scientific Reports, 2017, 7, pp.3767. ⟨10.1038/s41598-017-03942-z⟩. ⟨pasteur-01570226⟩
324 Consultations
203 Téléchargements

Altmetric

Partager

More